
www.manaraa.com

Drink. Water Eng. Sci., 10, 53–59, 2017
https://doi.org/10.5194/dwes-10-53-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Technical note: Efficient online source identification
algorithm for integration within a contamination

event management system

Jochen Deuerlein, Lea Meyer-Harries, and Nicolai Guth
3S Consult GmbH, 76137 Karlsruhe, Germany

Correspondence to: Jochen Deuerlein (deuerlein@3sconsult.de)

Received: 17 March 2017 – Discussion started: 21 March 2017
Accepted: 6 June 2017 – Published: 17 July 2017

Abstract. Drinking water distribution networks are part of critical infrastructures and are exposed to a number
of different risks. One of them is the risk of unintended or deliberate contamination of the drinking water within
the pipe network. Over the past decade research has focused on the development of new sensors that are able
to detect malicious substances in the network and early warning systems for contamination. In addition to the
optimal placement of sensors, the automatic identification of the source of a contamination is an important com-
ponent of an early warning and event management system for security enhancement of water supply networks.
Many publications deal with the algorithmic development; however, only little information exists about the inte-
gration within a comprehensive real-time event detection and management system. In the following the analytical
solution and the software implementation of a real-time source identification module and its integration within
a web-based event management system are described. The development was part of the SAFEWATER project,
which was funded under FP 7 of the European Commission.

1 Introduction

Drinking water distribution networks (WDNs) are an inte-
gral part of the technical infrastructure. Their task is to de-
liver a sufficient amount of drinking water of perfect qual-
ity at any place and any time. Since WDNs are exposed to
a number of different risks, they belong to the critical infras-
tructures. One important risk is the (deliberate) contamina-
tion of drinking water with harmful substances. An adequate
risk management system is required to manage the different
threats in case of an event. Such a system normally consists
of components for prevention, detection and response. Pre-
vention measures include for example the protection of facil-
ities such as water treatment plants, storage tanks and pump-
ing stations or network sectorization for isolation of contam-
inants (Di Nardo et al., 2014). Among others, online mon-
itoring of water quality within the distribution system is an
essential part of a contamination warning or early detection
system (Hall et al., 2007). As important, in case of a con-
tamination event, is a well-prepared and efficient response

plan. For more than 1 decade a number of researchers have
been working on methods for civil protection, real-time de-
tection of contaminations and specific sensor development.
Different software tools have been developed tackling prob-
lems such as optimal placement of sensors in the system (e.g.
TEVA-SPOT, Sandia National Laboratories, 2017b; Chang
et al., 2011) and detection algorithms (e.g. CANARY, San-
dia National Laboratories, 2017a). Even though sensor-based
online detection systems are capable of raising an alarm al-
most in real time if the quality of the water that reached the
sensor deteriorated, the location of the source of this deteri-
oration, in general, remains unclear. Since the efficiency of
response actions is strongly dependent on the knowledge of
the location of the source and the time when the contami-
nation started, a tool is required that calculates the possible
location of the contamination source based on the sensor in-
formation (SI: source identification). Then, in combination
with the knowledge of the flow velocities in the pipes, the
current spread of contamination and therewith the affected
population can be estimated.
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For solution of the source identification problem there are
several categories of formulations and solving methods. Tra-
ditionally, SI was treated as an inverse parameter estimation
problem. The parameters are the node time pairs of possible
contaminations. Laird et al. (2005) formulated the SI prob-
lem as a non-linear, infinite-dimensional optimization prob-
lem subject to algebraic, ordinary differential, and partial dif-
ferential constraints. Input parameters are the flow profiles
calculated by hydraulic simulation and measured concentra-
tions at sensor locations. As output, the time-dependent con-
centration along pipes and at junctions and the mass input
at junctions as a function of time are sought. The method
was tested for a network with 469 nodes. Even for this small
model the number of unknowns in the non-linear program-
ming (NLP) problem already reached 210 000. As a con-
sequence, the method cannot be applied to real-time calcu-
lation of the large-size network models. Other authors use
stochastic optimization methods for solution of the param-
eter estimation problem. Preis and Ostfeld (2008) combine
the EPANET hydraulic and water quality simulation soft-
ware with a genetic algorithm (GA). The objective function
consists of a least squares function of measured and calcu-
lated concentrations. For the measurements, imperfect sen-
sors are also taken into account. The calculation time for
a test network with less than 1000 nodes was about 1 h. Liu
et al. (2011) use an evolutionary algorithm (EA) for adap-
tive dynamic optimization (based on updated observations)
and continually search for optimal solutions of a modified
least squares function. Other authors (e.g. Propato et al.,
2007) propose applying an input–output model for contam-
inant source identification. The model consists of a linear
relationship between the possible source concentrations and
the concentration measured at the sensors. The equation uses
a linear transport matrix that is, in general, underdetermined,
leading to non-unique solutions. Since for real-time applica-
tion the execution time of the method is the critical perfor-
mance indicator, optimization-based methods are not suited.
Therefore, De Sanctis et al. (2010) use a modified particle
backtracking method (PBA) for identification of all possible
contaminant source locations. For alarm generation, binary
sensor information is introduced. The authors claim that for-
mulating the SI problem as an inverse water quality problem
is difficult for three reasons: (1) ill-posedness (sparse sensor
grid in contrast to a huge number of possible sources, e.g.
hydrants, house connections), (2) problem size (number of
possible sources times the number of time steps within the
detection time), and (3) assumption of the existence of per-
fect quality sensors that are capable of measuring the concen-
tration of all relevant substances that do not exist in reality. In
addition to the available number of sensors and their reliabil-
ity, the design of the sensor network is also essential for the
effectiveness and accuracy of the source. Recently, a method
was published that takes into account the feedback between
the sensor network design and the efficiency of the source
identification algorithm (Ung et al., 2017).

In the following a software tool is presented that is suitable
for real-time application and integration within risk or event
management systems. It was developed as part of EU-funded
project SAFEWATER (contract number: 312764). The algo-
rithmic development is based on a simplified transport al-
gorithm that runs forward and backward in time. Whereas
backtracking is used for source identification, forward sim-
ulation delivers the estimated current spread of contamina-
tion based on the source locations. As a possible response
action, the tool also proposes valves to be closed for isola-
tion of contaminants. The software is part of comprehensive
event management software (EMS) that collects all informa-
tion from the field and from different software components
that are connected with the EMS, including a newly devel-
oped event detection system (EDS) as well as offline and on-
line hydraulic and water quality simulators. The paper starts
with an overview of the theoretical background, including
a simplified transport model and source identification algo-
rithm. Then, the integration within the EMS framework is
outlined. Finally, the application of the tool is presented for
the SAFEWATER test lab water network at Water Supply
Zurich.

2 Theoretical background

2.1 Transport model

The theory of modelling reaction and transport of substances
within a water distribution system is described in a number of
books and articles. A good overview of the methods that are
included in most of the commercially available simulation
software tools can be found in Rossman and Boulos (1996).
In the following a very brief presentation of the problem of
contaminant injection with sharp quality fronts (discontinu-
ity) is given. Reaction and diffusion are not considered here.
In this case the transport is described by the so-called Rie-
mann problem (p. 49 in Toro, 2009):

(PDE) ct + vcx = 0, −∞< x <∞, t > 0, (1a)

(IC) c (x,0)= c0 (x)=
{

cL if x < 0,

cR if x > 0.
(1b)

The partial differential equation (1a, PDE) includes the par-
tial derivatives of the concentration c after time (ct ) and loca-
tion within the pipe (cx); v denotes the flow velocity. The ini-
tial value problem (IVP) of Eq. (1) differs from conventional
transport equations only in the initial condition (Eq. 1b, IC).
Here, there are two constant water qualities cL and cR that
are upstream and downstream of point x = 0. For x = 0 the
initial condition has a discontinuity. For solution the method
of characteristics (MOC) can be used. When time passes, the
discontinuity is propagated along the characteristic lines with
flow velocity v. Accordingly, the solution of this simplest
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case of Riemann problems (Eq. 1) is

c (x, t)= c0 (x− vt)=
{

cL if x− vt < 0,

cR if x− vt > 0.
(2)

For the Riemann equation, the characteristic that passes
through x = 0 is of special interest. It separates the (con-
centration) surface above the x–t-plane into one part where
the concentration is cL and one part where the concentra-
tion is cR . This particular characteristic line is the only one
across which the concentration changes. For implementation,
the IVP (1) is solved for all pipes using a MOC. For later
processing of the results, the traces of a particle that travels
along the special characteristic line that starts from x = 0 is
stored. In the easiest case the flow velocity is constant and
only the slope has to be stored. However, in extended pe-
riod simulations the flow velocity and even the flow direction
may change from external time step to time step. Therefore,
it proved to be convenient to store the [time, position, value]
triples of all particles for every external time step. The term
external time step refers to the time interval between updates
of the boundary conditions of the underlying hydraulic simu-
lation model. Since the flow velocities change only after such
an external time step, the full information [value, time, posi-
tion] can be re-established from this information for any time
and location.

In order to move from the pipe level – with the initial as-
sumption of infinite pipe length from above – to the network
level, additional boundary conditions have to be considered
for a finite pipe length. The IVP then is transferred to an
IBVP (initial boundary value problem). In general, the com-
bination of pipes at a junction requires the formulation of ad-
ditional mixing conditions at network nodes. Since no criti-
cal concentration can be given for unknown substances, here,
the binary information (contaminated yes/no) of the front is
transferred unchanged to all pipes having outflows from the
junction.

2.2 Source identification

The proposed source identification (SI) module is distin-
guished from existing solutions by its real-time capabilities,
its integration within the EMS and the permanent calculation
of the monitoring state of the sensor network even in the case
with no alarm. The latter is useful especially when flow di-
rections change due to network operations. The continuous
backtracking of negative sensor alarms allows the visualiza-
tion of the current monitoring state of the system. For any
location in the network, the last time of observation is calcu-
lated. Given the limited coverage of the distribution network
by the sensor network, a contamination may not be detected
by the sensors because it can be outside of the covered area.
It is important to be aware of this issue if other detections,
like customer complaints, indicate an event contradicting the
negative alarm states of the sensors.

In the context of SAFEWATER, one basic requirement
was that the source identification algorithm must deliver
results almost in real time. For that reason, all kinds of
optimization-based approaches (see the Introduction) are not
suitable due to the huge number of simulations and thus the
long computing time that are required for stochastic opti-
mization models. Therefore, a more direct approach was cho-
sen for the solution of the inverse problem. It has some sim-
ilarities to the particle backtracking algorithm that was first
presented by Shang et al. (2002) and the approach presented
by De Sanctis et al. (2010). Its core component is an event-
driven simplified transport algorithm that does not consider
reaction and diffusion mechanisms as described in the previ-
ous section. Another key performance indicator is the usage
of memory. In the presented approach, a special format was
developed that is used for storing the characteristic lines of
the transport equation MOC. This information can then be
used for particle tracking (forward and backward) as well as
reconstruction of time curves (at a certain location) or the
concentration along a pipe at a certain time. For implemen-
tation in SAFEWATER, an event-driven method is used that
strongly simplifies the common water quality equations: in-
stead of concentrations, only binary quality states are calcu-
lated (contaminated/not contaminated), neglecting reaction
and diffusion terms and using simplified mixing equations.
An event is triggered every time a change in the (binary)
boundary conditions occurs (for example, start of intrusion in
the forward case or release of a sensor alarm in the backward
case). The algorithm sends a separator front through the sys-
tem following the flow velocity of the water in the pipes (for-
ward) or working against it (backtracking case). The mov-
ing front separates the network into regions that have distinct
values for the binary quality state (contaminated/not contam-
inated). In the reverse case, a change in the sensor alarm state
is considered a binary signal (no alarm → alarm). Based
on this simplifying assumption, memory requirements and
calculation time are minimized in comparison with common
water quality solvers. The fact that in the case of a real event
the substance and input concentration of a contamination are
presumably not known may serve as a justification for the
simplifying assumptions.

For solution of the source identification problem at each
external time step (change in the flow vector), the alarm
states of the sensors (positive, negative, unknown) are sent
through the system in reverse time. If at least one of the sen-
sors is positive, the nodes and pipes upstream of the sensor
are identified, which are possible candidates for the loca-
tion of the contamination source. If more sensors have pos-
itive alarm states, normally released at different times, the
results of the backtracking calculations are combined. Nec-
essary conditions for source candidate locations are that (1)
signals of all positive sensors passed the location during the
backtracking, and (2) no signal of a negative sensor was ob-
served. Since the conditions are necessary but not sufficient,
the backtracking, in general, cannot give unique source lo-
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cations. Based on a worst case assumption a unique source
location is selected that serves as input for a simplified look-
ahead transport calculation that gives an estimation over the
future spread of contamination. As a worst case, the node
with the biggest outflow volume is chosen. This second step
is necessary since the backtracking algorithm in general does
not give unique results. The region of possible source loca-
tions can be quite large depending on the efficiency of the
sensor network.

It is important to mention that negative sensor alarms
also deliver useful information. The backtracking of nega-
tive alarm states (under the assumption of perfect sensors)
identifies the nodes upstream of these sensors and the times
when the signal passes the nodes. A contamination starting
from such a node before the calculated arrival time of the
negative separator front is not possible since, in this case, the
sensor alarm state must have been positive as well. Conse-
quently, the nodes can be withdrawn from the list of source
candidates. Another important application of backtracking of
negative sensor alarms consists in the continuously updated
monitoring state of the system. The backtracking algorithm
calculates a kind of reverse water age for each location under
the protection of the sensor network. That means that for any
location the time of the last observation is known. In addi-
tion, the nodes and pipes that are not covered by the sensor
network can be visualized and updated in real time.

For estimation of the future spread of contamination and
the identification of isolation valves, the simplified forward
transport calculation is used. Here, the assumption is again
that more complicated water quality calculations such as in-
complete mixing, reaction and diffusion are of secondary im-
portance for this particular problem. It is expected that at the
beginning of a real contamination event the kind and severity
of the substance are unknown. In the SAFEWATER project
a second water quality solver was implemented that deals
with all of these issues. Once more information about the
chemical properties of the agent is available, the enhanced
water quality solver can be used for more detailed calcula-
tion of concentrations.

3 Outline of the integration within the EMS

For integration of the different software components within
a real-time environment and the SAFEWATER-EMS, the ex-
isting SirOPC software tool was extended by implementation
of additional plugins. Originally, SirOPC was developed for
connecting hydraulic simulation software with common OPC
server software provided by the SCADA system for receiving
and sending real-time operational data. The plugin technol-
ogy allows the flexible extension of the software. For connec-
tion with external data, adapter plugins are used (blue boxes
in Fig. 1). Application plugins allow the integration of spe-
cialized software tools (green boxes in Fig. 1) with the data
managed by the core component. The plugins provide the in-

terfaces between the central data and native applications. For
example, the hydraulic solver plugin includes the interface
for updating boundary conditions of a hydraulic simulation
model with SCADA system data that are delivered through
SirOPC and the OPC data adapter. The SIRA plugin is used
to connect the source identification solver with the core soft-
ware and manages the update of the flows calculated by the
hydraulic solver. For exchange of mass data, an additional
database interface exists. For communication with the EMS,
an ActiveMQ (2015) data adapter plugin has been developed
in the project that is able to receive messages about changes
in alarm states of the sensors that are detected by the EDS.
Based on this information, the online variables are updated in
the SirOPC core, from where the information is transferred to
the SI algorithm. By implementation, the developed SI mod-
ule runs in combined online mode together with the hydraulic
solver. The boundary conditions of the hydraulic solver are
updated in regular time intervals by receiving data from the
OPC server. After each time step calculated by the hydraulic
solver, the flow velocities in the source identification algo-
rithm are updated and new backtracking calculations are car-
ried out. Positive alarms are generated by the EMS as soon
as a pending alarm is acknowledged by the operator. Alarms
could trigger calculations automatically, but in order to avoid
false alarms due to known events, at this stage of the devel-
opment every alarm has to be manually acknowledged. After
that, an ActiveMQ message is sent to SirOPC. The next SI
calculation considers the positive alarm and calculates the
possible locations for the source of contamination that are
consistent with the alarm states of all sensors, including neg-
ative sensor alarms.

As a possible response action, the valves are identified that
have to be closed for isolation of the contaminant. The results
of the different algorithms are presented in a native GUI of
the SI application as well as in the EMS map. The execution
loop, which is in mutual feedback with the hydraulic simu-
lator, is controlled by so-called custom commands, a kind of
virtual state machine (Petri-Net). The results of the SI calcu-
lations are stored in a database that can be accessed by the
EMS for further processing and visualization.

4 Source identification module example

4.1 Calculation of source candidates

In the following section the SI algorithm is demonstrated us-
ing the example of the SAFEWATER test network in Zurich
(Fig. 2). The total pipe length of the network is about 160 m.
The system consists of transparent PVC pipes (diameter
100 mm) and has three major outlets that allow the opera-
tion with adjustable demands. In addition to flow and pres-
sure measurements at the system inlet there are four addi-
tional flow measurements installed within the pipe network.
The measurement devices are connected to a central OPC
server. The hydraulic online simulation is connected with
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Figure 1. System architecture of SI integration within the SAFEWATER event management system.

Figure 2. Test network with four sensors (orange circles) and contamination source (red circle).

the OPC server through a bidirectional interface provided
by the SirOPC online OPC client. The hydraulic simulation
runs every 5 s with updated boundary values from the OPC
server. The calculation results, namely the flow velocities,
are stored in a native binary data format from where they can
be accessed by the SI plugin and transferred to the transport
solvers.

Water quality sensors are installed at five locations. Four
sensors are distributed over the network (orange circles) and
one is located directly downstream from the contamination
source (red circle) in order to control the entrance water qual-
ity for the injection scenarios. For demonstration purposes,
the sensor alarm times were calculated by running a forward
transport calculation that starts at 09:02. The SI software tool
is able to record the earliest time when the contamination
passed the sensors. During the tests, a valve on the lower
left-hand side was closed. Therefore, there is almost no flow
in direction towards sensor E and the alarm time is beyond
the scenario end time (09:30). The subsequent alarm times
are also shown in Fig. 2. From Fig. 3 it can be seen that the
more information is available (through subsequent additional
alarms), the smaller the area of possible source candidates
(red marked pipes). In Fig. 3a all pipes upstream of sensor B

are possible locations. In Fig. 3b the combination of the up-
stream pipes of sensor B and of sensor D decreases the set of
source candidates because the locations directly upstream of
sensor B cannot explain the alarm at sensor location D. The
area is further reduced after the third alarm (Fig. 3c). Possi-
ble source locations must also be upstream of sensor C. The
orange and blue marked pipes show the estimated spread at
the current time and in a predefined look-ahead time, respec-
tively.

4.2 Impact of negative sensor alarms on source
identification results and selection of a single source

The sensors do not only deliver valuable information in case
of an alarm. Backtracking of negative sensor alarm states also
helps to reduce the area of possible source candidates (see for
comparison De Sanctis et. al., 2010). Assuming perfect sen-
sors, the upstream locations of the negative sensors cannot be
the contamination source since otherwise the contamination
had to be detected by the sensor. Negative sensors can clear
parts of the source candidate locations. A node (or pipe) is
a possible candidate for the contamination source if the sen-
sor signals of all sensors with positive alarms are observed
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Figure 3. Sequential release of sensor alarms and results of the SI algorithm, current spread of contaminant and look-ahead.

and no signal of negative sensors can be found for these loca-
tions. A particular weighting scheme has been implemented,
considering also the duration and time delay between the dif-
ferent signals. The criterion for a node to be a source can-
didate location is that all signals that passed that node are
positive signals. The set of source candidate locations con-
sists of a more or less large area, depending on the design of
the sensor network, the number of sensors and the topology
of the network graph. For example, if forward calculations
shall be carried out for the estimation of the current spread
of contamination, a single source node has to be selected.

5 Conclusions

In case of a contamination event, finding fast, efficient and
simple response actions after detection is the key issue for
mitigating contamination of drinking water distribution net-
works. The online source identification module indicates the
possible locations of the source of contaminants and shows
the current monitoring state at any location and any time.
The presented SI module is integrated in combination with
hydraulic online simulation within the SAFEWATER event
management system. On the SI input side the hydraulic on-
line simulator delivers system-wide flow velocities needed
for transport calculations based on actual process data that
are received from a SCADA system using OPC technology.
The continuous update of the model by online data aims at
maintaining a sufficient match between the model parame-

ters and the real situation in the field for changing opera-
tional conditions. This is a step forward and improves the
situation compared to calculations based on offline models.
However, it must not be forgotten that uncertainty in model
parameters still exists, especially the demands, affecting also
the accuracy of the results of the source identification algo-
rithm. The number of unknown parameters normally exceeds
the number of measurements by magnitude. The alarm states
of sensors are sent by the EMS using the ActiveMQ com-
munication channel. As output, the module generates current
monitoring states of the network and, in the case of a posi-
tive sensor alarm, the source candidate locations. The output
is visualized in the GIS map of the EMS. In addition to the
tests for the network on a lab scale, the functionality and ap-
plicability of the development of the approaches were also
proven within the project for three pilot zone systems of real
existing networks (details cannot be presented for security
reasons). Future work should focus on the enhancement of
the calculation cycle. While the run time of the algorithms is
considered to be sufficiently short also for large networks, the
huge amount of data to be processed and transferred through
the different modules is still a challenge for large real-world
applications.

Data availability. Several outputs of the SAFEWATER project are
defined as classified (up to EU Confidential level). Therefore, no
further material can be published. The original conference paper
has undergone a security review process by the SAG (Security
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Advisory Group) project. The motivation for and the objectives
and achievements of the SAFEWATER project can be viewed at
https://www.youtube.com/watch?v=Bs5SljKUxgE.
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